Plants (Apr 2023)

Elemental Composition and Implications on Brown Rice Flour Biofortified with Selenium

  • Ana Coelho Marques,
  • Fernando C. Lidon,
  • Ana Rita F. Coelho,
  • Cláudia Campos Pessoa,
  • Diana Daccak,
  • Inês Carmo Luís,
  • Manuela Simões,
  • Paula Scotti-Campos,
  • Ana Sofia Almeida,
  • Mauro Guerra,
  • Roberta G. Leitão,
  • Ana Bagulho,
  • José Moreira,
  • Maria F. Pessoa,
  • Paulo Legoinha,
  • José C. Ramalho,
  • José N. Semedo,
  • Lourenço Palha,
  • Cátia Silva,
  • Maria Manuela Silva,
  • Karliana Oliveira,
  • Isabel P. Pais,
  • Fernando H. Reboredo

DOI
https://doi.org/10.3390/plants12081611
Journal volume & issue
Vol. 12, no. 8
p. 1611

Abstract

Read online

Rice (Oryza sativa L.) is one of the most economically and socially important cereals in the world. Several strategies such as biofortification have been developed in a way eco-friendly and sustainable to enhance crop productivity. This study implemented an agronomic itinerary in Ariete and Ceres rice varieties in experimental fields using the foliar application of selenium (Se) to increase rice nutritional value. At strategic phases of the plant’s development (at the end of booting, anthesis, and at the milky grain stage), they were sprayed with sodium selenate (Na2SeO4) and sodium selenite (Na2SeO3). In the first foliar application plants were sprayed with 500 g Se·ha−1 and in the remaining two foliar applications were sprayed with 300 g Se·ha−1. The effects of Se in the level of micro and macronutrients in brown grains, the localization of Se in these grains, and the subsequent quality parameters such as colorimetric characteristics and total protein were considered. After grain harvesting, the application of selenite showed the highest enrichment in all grain with levels reaching 17.06 µg g−1 Se and 14.28 µg g−1 Se in Ariete and Ceres varieties, respectively. In the Ceres and Ariete varieties, biofortification significantly affected the K and P contents. Regarding Ca, a clear trend prevailed suggesting that Se antagonizes the uptake of it, while for the remaining elements in general (except Mn) no significant differences were noted. Protein content increased with selenite treatment in the Ariete variety but not in Ceres. Therefore, it was possible to conclude, without compromising quality, that there was an increase in the nutritional content of Se in brown rice grain.

Keywords