Remote Sensing (Dec 2021)
A Semi-Automatic Workflow to Extract Irregularly Aligned Plots and Sub-Plots: A Case Study on Lentil Breeding Populations
Abstract
Plant breeding experiments typically contain a large number of plots, and obtaining phenotypic data is an integral part of most studies. Image-based plot-level measurements may not always produce adequate precision and will require sub-plot measurements. To perform image analysis on individual sub-plots, they must be segmented from plots, other sub-plots, and surrounding soil or vegetation. This study aims to introduce a semi-automatic workflow to segment irregularly aligned plots and sub-plots in breeding populations. Imagery from a replicated lentil diversity panel phenotyping experiment with 324 populations was used for this study. Image-based techniques using a convolution filter on an excess green index (ExG) were used to enhance and highlight plot rows and, thus, locate the plot center. Multi-threshold and watershed segmentation were then combined to separate plants, ground, and sub-plot within plots. Algorithms of local maxima and pixel resizing with surface tension parameters were used to detect the centers of sub-plots. A total of 3489 reference data points was collected on 30 random plots for accuracy assessment. It was found that all plots and sub-plots were successfully extracted with an overall plot extraction accuracy of 92%. Our methodology addressed some common issues related to plot segmentation, such as plot alignment and overlapping canopies in the field experiments. The ability to segment and extract phenometric information at the sub-plot level provides opportunities to improve the precision of image-based phenotypic measurements at field-scale.
Keywords