Applied Sciences (Aug 2025)
Predicting Attachment Class Using Coherence Graphs: Insights from EEG Studies on the Secretary Problem
Abstract
Attachment styles, rooted in Bowlby’s Attachment Theory, significantly influence our romantic relationships, workplace behavior, and decision-making processes. Traditional methods like self-report questionnaires often have biases, so we aimed to develop a predictive model using objective physiological data. In our study, participants engaged in the Secretary problem, a sequential decision-making task, while their brain activity was recorded with a 16-electrode EEG device. We transformed this data into coherence graphs and used Node2Vec and PCA to convert these graphs into feature vectors. These vectors were then used to train a machine learning model, XGBoost, to predict attachment styles. Using participant-level nested 5-fold cross-validation, our first model achieved 80% accuracy for Secure and 88% for Fearful-avoidant styles but had difficulty distinguishing between Avoidant and Anxious styles. Analysis of the first three principal components showed these two groups overlapped in coherence space, explaining the confusion. To address this, we created a second model that categorized participants as Secure, Insecure, or Extremely Insecure, improving the overall accuracy to about 92%. Together, the results highlight (i) large-scale EEG connectivity as a viable biomarker of attachment, and (ii) the empirical similarity between Anxious and Avoidant profiles when measured electrophysiologically. This method shows promise in using EEG data and machine learning to understand attachment styles. Our findings suggest that future research should include larger and more diverse samples to refine these models. If validated in multi-site cohorts, such graph-based EEG markers could guide personalised interventions by objectively assessing attachment-related vulnerabilities. This study demonstrates the potential for using EEG data to classify attachment styles, which could have important implications for both research and therapeutic practices.
Keywords