npj Computational Materials (Apr 2022)

Intermediate polaronic charge transport in organic crystals from a many-body first-principles approach

  • Benjamin K. Chang,
  • Jin-Jian Zhou,
  • Nien-En Lee,
  • Marco Bernardi

DOI
https://doi.org/10.1038/s41524-022-00742-6
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Charge transport in organic molecular crystals (OMCs) is conventionally categorized into two limiting regimes − band transport, characterized by weak electron-phonon (e-ph) interactions, and charge hopping due to localized polarons formed by strong e-ph interactions. However, between these two limiting cases there is a less well understood intermediate regime where polarons are present but transport does not occur via hopping. Here we show a many-body first-principles approach that can accurately predict the carrier mobility in this intermediate regime and shed light on its microscopic origin. Our approach combines a finite-temperature cumulant method to describe strong e-ph interactions with Green-Kubo transport calculations. We apply this parameter-free framework to naphthalene crystal, demonstrating electron mobility predictions within a factor of 1.5−2 of experiment between 100 and 300 K. Our analysis reveals the formation of a broad polaron satellite peak in the electron spectral function and the failure of the Boltzmann equation in the intermediate regime.