Ciência Rural (Jul 2010)

Tamanho de amostra para a estimação da média mensal de insolação diária em diferentes locais do estado do Rio Grande do Sul Sample size for estimating the average monthly daily insolation in different locations of Rio Grande do Sul State, Brazil

  • Alberto Cargnelutti Filho,
  • Ronaldo Matzenauer,
  • Bernadete Radin,
  • Jaime Ricardo Tavares Maluf

Journal volume & issue
Vol. 40, no. 7
pp. 1509 – 1515

Abstract

Read online

Com o objetivo de determinar o tamanho de amostra (número de anos) para a estimação da média mensal de insolação diária de 30 locais do Estado do Rio Grande do Sul, utilizaram-se os dados de insolação do período de 1960 a 2007. Em cada uma das 360 séries temporais (12 meses x 30 locais), calcularam-se a média e a variância e testaram-se a aleatoriedade e a normalidade dos dados. Verificou-se a homogeneidade de variâncias entre os meses em cada local e entre os locais em cada mês. Depois, calculou-se o tamanho de amostra em cada mês e local. O tamanho de amostra (número de anos) para a estimação da média mensal de insolação diária é dependente do mês e do local. Para os meses e locais estudados, até 44 anos de observações são necessários para estimar a média mensal de insolação diária, para um erro de estimação igual a ±0,5 horas dia-1, com grau de confiança de 95%.It was used data from 30 locations of the Rio Grande do Sul State, Brazil, collected from 1960 to 2007, with the objective to determine the sample size (number of years) to estimate the average daily month insolation . The average and variance was calculated for each of the 360 time series (12 months x 30 locations) and the aleatory and normality data were tested. Then it was verified the homogeneity of variance among months in each locality and among places in each month and it was determined the sample size to estimate the average monthly insolation daily in each month and locality. The sample size (number of years) to estimate the average monthly insolation daily is dependent on the month and locality. One concluded that 44 years of data are enough to predict the average monthly insolation daily, with an estimation error equal to ±0.5 hours days-1, with a degree confidence of 95%.

Keywords