AIMS Mathematics (Mar 2022)
Normalized ground states for fractional Kirchhoff equations with critical or supercritical nonlinearity
Abstract
The aim of this paper is to study the existence of ground states for a class of fractional Kirchhoff type equations with critical or supercritical nonlinearity $ (a+b\int_{\mathbb{R}^{3}}|(-\bigtriangleup)^{\frac{s}{2}}u|^{2}dx)(-\bigtriangleup)^{s}u = \lambda u +|u|^{q-2 }u+\mu|u|^{p-2}u, \ x\in\mathbb{R}^{3}, $ with prescribed $ L^{2} $-norm mass $ \int_{\mathbb{R}^{3}}u^{2}dx = c^{2} $ where $ s\in(\frac{3}{4}, \ 1), \ a, b, c > 0, \ \frac{6+8s}{3} < q < 2_{s}^{\ast}, \ p\geq 2^{\ast}_{s}\ (2^{\ast}_{s} = \frac{6}{3-2s}), \ \mu > 0 $ and $ \lambda\in \mathbb{R} $ as a Langrange multiplier. By combining an appropriate truncation argument with Moser iteration method, we prove that the existence of normalized solutions for the above equation when the parameter $ \mu $ is sufficiently small.
Keywords