Journal of Cardiothoracic Surgery (Apr 2020)
Epicardial left atrial appendage occlusion with a new medical device: assessment of procedural feasibility, safety and efficacy in a large animal model
Abstract
Abstract Background Left atrial appendage occlusion (LAAO) represents a treatment alternative to anticoagulation in patients with atrial fibrillation. We evaluate a novel device for epicardial LAAO in a translational canine model. Methods Nine hounds (n = 9) were used to assess usability, safety, and efficacy of the TigerPaw Pro (TPP) device for epicardial LAAO. Following baseline imaging (intra-cardiac echocardiography (ICE) and angiography) and intraoperative visual inspection, usability was tested via a ``closure/re-opening`` maneuver followed by deployment of a total of twenty TPP devices (n = 20) on the left and right atrial appendages respectively. Procedural safety was evaluated by assessing for adverse-events via direct Epicardial inspection and endocardial imaging. Efficacy evaluation included assessment of device positioning, presence of residual stumps and completeness of closure. Post-mortem evaluation was performed to confirm safety and efficacy. Results Usability testing of all TPP devices was successful (n = 20;100%, delivery-time range 22–120 s) without any procedural adverse-events (tissue damage or tears, bleeding, vessel-impingement, structural impact). All devices fully traversed the ostium (n = 18) or appendage body (n = 2), and conformed smoothly to adjacent cardiac anatomy. In nineteen deployments (n = 19;95%), all device connector pairs were fully engaged, while in one TPP device the most distal pair remained unengaged. ICE and post-mortem inspections revealed complete closure of all appendage ostia (n = 18;100%) and only in one case a small residual stump was detected. Intraoperative safety findings were further confirmed post-mortem. Devices created a nearly smooth line of closure via symmetric endocardial tissue-coaptation. Conclusions In this preclinical model, the TPP demonstrated good ease of use for ostial access, ability to re-position (after engagement) and rapid deployment, while achieving safe and effective LAAO.
Keywords