PLoS ONE (Jan 2012)
β-defensin 2 as an adjuvant promotes anti-melanoma immune responses and inhibits the growth of implanted murine melanoma in vivo.
Abstract
β-defensin 2 is a small antimicrobial peptide of the innate immune system and has been thought to regulate anti-tumor immunity. However, little is known on whether β-defensin 2 could modulate melanoma-specific NK and T cell responses. In this study, we first cloned the murine β-defensin 2 gene by RT-PCR and generated the β-defensin 2 stably expressing B16 cells (B16-mBD2). Subsequently, we evaluated whether vaccination with irradiated B16-mBD2 could modulate the growth of implanted B16 cells and determined the potential mechanisms underlying the action of B16-mBD2 vaccine in modulating the growth of B16 tumors in C57BL/6. We found that vaccination with irradiated B16-mBD2, but not with control B16-p or parental B16, inhibited the development and progression of B16 tumors, and prolonged the survival of tumor-bearing mice. However, vaccination with irradiated B16-mBD2 failed to inhibit the development of B16 tumors in the CD4(+)- or CD8(+)-depleted recipients. Furthermore, vaccination with irradiated B16-mBD2 stimulated strong NK activity and promoted potent B16-specific CTL responses, accompanied by augmenting IFN-γ and IL-12, but not IL-4, responses in the recipient mice. Moreover, vaccination with irradiated B16-mBD2 promoted the infiltration of CD8(+) and CD4(+) T, NK cells and macrophages in the tumor tissues. These data suggest β-defensin 2 may act as a positive regulator, promoting anti-tumor NK and T cell responses in vivo. Therefore, β-defensin 2 may be used for the development of immunotherapy for the intervention of melanoma.