Applied Sciences (Oct 2024)

A Data- and Model-Integrated Driven Method for Recommending the Maximum Safe Braking Deceleration Rates for Trucks on Horizontal Curves

  • Tian Xin,
  • Jinliang Xu

DOI
https://doi.org/10.3390/app14209357
Journal volume & issue
Vol. 14, no. 20
p. 9357

Abstract

Read online

Truck skidding crashes on horizontal curves pose a significant road safety concern, with improper braking being the primary cause. A data- and model-integrated driven method is proposed to investigate the mechanism and recommend the maximum safe braking deceleration rates without skidding (abbreviated as MSBDRs) for trucks on horizontal curves. Firstly, a comprehensive road–vehicle interaction model was developed, considering dynamic changes in brake force distribution, vertical tire load, and longitudinal and side friction during braking. Secondly, leveraging the “HighD” data set and employing cluster analysis principles, parameter data were extracted using Python and Matlab. Finally, through parameterizing model inputs, the transient dynamic response of trucks was examined, the potential of truck skidding was predicted, and the MSBDRs were recommended. The results indicate the following. (1) There is little concern of truck skidding during car-following braking maneuvers; however, there is a high potential of truck skidding during emergency braking maneuvers. (2) The MSBDR is 4.5 m/s2 on a limit-minimum-radius horizontal curve; however, when combined with steep slopes, an overspeed exceeding 20%, and extremely wet road conditions, respectively, the MSBDRs decrease to 4 m/s2, 3 m/s2, and 2 m/s2. These results provide a theoretical foundation for braking strategies in autonomous vehicles.

Keywords