International Journal of Aerospace Engineering (Jan 2018)

An Improved Scale-Adaptive Simulation Model for Massively Separated Flows

  • Yue Liu,
  • Xiaorong Guan,
  • Cheng Xu

DOI
https://doi.org/10.1155/2018/5231798
Journal volume & issue
Vol. 2018

Abstract

Read online

A new hybrid modelling method termed improved scale-adaptive simulation (ISAS) is proposed by introducing the von Karman operator into the dissipation term of the turbulence scale equation, proper derivation as well as constant calibration of which is presented, and the typical circular cylinder flow at Re = 3900 is selected for validation. As expected, the proposed ISAS approach with the concept of scale-adaptive appears more efficient than the original SAS method in obtaining a convergent resolution, meanwhile, comparable with DES in visually capturing the fine-scale unsteadiness. Furthermore, the grid sensitivity issue of DES is encouragingly remedied benefiting from the local-adjusted limiter. The ISAS simulation turns out to attractively represent the development of the shear layers and the flow profiles of the recirculation region, and thus, the focused statistical quantities such as the recirculation length and drag coefficient are closer to the available measurements than DES and SAS outputs. In general, the new modelling method, combining the features of DES and SAS concepts, is capable to simulate turbulent structures down to the grid limit in a simple and effective way, which is practically valuable for engineering flows.