Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
Thomas M Lancaster
Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom; Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom; MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
David Linden
Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom; Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom; MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom; Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
We studied resting-state oscillatory connectivity using magnetoencephalography in healthy young humans (N = 183) genotyped for APOE-ɛ4, the greatest genetic risk for Alzheimer’s disease (AD). Connectivity across frequencies, but most prevalent in alpha/beta, was increased in APOE-ɛ4 in a set of mostly right-hemisphere connections, including lateral parietal and precuneus regions of the Default Mode Network. Similar regions also demonstrated hyperactivity, but only in gamma (40–160 Hz). In a separate study of AD patients, hypoconnectivity was seen in an extended bilateral network that partially overlapped with the hyperconnected regions seen in young APOE-ɛ4 carriers. Using machine-learning, AD patients could be distinguished from elderly controls with reasonable sensitivity and specificity, while young APOE-e4 carriers could also be distinguished from their controls with above chance performance. These results support theories of initial hyperconnectivity driving eventual profound disconnection in AD and suggest that this is present decades before the onset of AD symptomology.