Mathematics (Apr 2021)
Parametric Estimation of Diffusion Processes: A Review and Comparative Study
Abstract
This paper provides an in-depth review about parametric estimation methods for stationary stochastic differential equations (SDEs) driven by Wiener noise with discrete time observations. The short-term interest rate dynamics are commonly described by continuous-time diffusion processes, whose parameters are subject to estimation bias, as data are highly persistent, and discretization bias, as data are discretely sampled despite the continuous-time nature of the model. To assess the role of persistence and the impact of sampling frequency on the estimation, we conducted a simulation study under different settings to compare the performance of the procedures and illustrate the finite sample behavior. To complete the survey, an application of the procedures to real data is provided.
Keywords