Electronic Proceedings in Theoretical Computer Science (Oct 2013)

Robust Leader Election in a Fast-Changing World

  • John Augustine,
  • Tejas Kulkarni,
  • Paresh Nakhe,
  • Peter Robinson

DOI
https://doi.org/10.4204/EPTCS.132.4
Journal volume & issue
Vol. 132, no. Proc. FOMC 2013
pp. 38 – 49

Abstract

Read online

We consider the problem of electing a leader among nodes in a highly dynamic network where the adversary has unbounded capacity to insert and remove nodes (including the leader) from the network and change connectivity at will. We present a randomized Las Vegas algorithm that (re)elects a leader in O(Dlog n) rounds with high probability, where D is a bound on the dynamic diameter of the network and n is the maximum number of nodes in the network at any point in time. We assume a model of broadcast-based communication where a node can send only 1 message of O(log n) bits per round and is not aware of the receivers in advance. Thus, our results also apply to mobile wireless ad-hoc networks, improving over the optimal (for deterministic algorithms) O(Dn) solution presented at FOMC 2011. We show that our algorithm is optimal by proving that any randomized Las Vegas algorithm takes at least Ω(Dlog n) rounds to elect a leader with high probability, which shows that our algorithm yields the best possible (up to constants) termination time.