PLoS ONE (Jan 2010)

A quantitative image cytometry technique for time series or population analyses of signaling networks.

  • Yu-ichi Ozaki,
  • Shinsuke Uda,
  • Takeshi H Saito,
  • Jaehoon Chung,
  • Hiroyuki Kubota,
  • Shinya Kuroda

DOI
https://doi.org/10.1371/journal.pone.0009955
Journal volume & issue
Vol. 5, no. 4
p. e9955

Abstract

Read online

BACKGROUND: Modeling of cellular functions on the basis of experimental observation is increasingly common in the field of cellular signaling. However, such modeling requires a large amount of quantitative data of signaling events with high spatio-temporal resolution. A novel technique which allows us to obtain such data is needed for systems biology of cellular signaling. METHODOLOGY/PRINCIPAL FINDINGS: We developed a fully automatable assay technique, termed quantitative image cytometry (QIC), which integrates a quantitative immunostaining technique and a high precision image-processing algorithm for cell identification. With the aid of an automated sample preparation system, this device can quantify protein expression, phosphorylation and localization with subcellular resolution at one-minute intervals. The signaling activities quantified by the assay system showed good correlation with, as well as comparable reproducibility to, western blot analysis. Taking advantage of the high spatio-temporal resolution, we investigated the signaling dynamics of the ERK pathway in PC12 cells. CONCLUSIONS/SIGNIFICANCE: The QIC technique appears as a highly quantitative and versatile technique, which can be a convenient replacement for the most conventional techniques including western blot, flow cytometry and live cell imaging. Thus, the QIC technique can be a powerful tool for investigating the systems biology of cellular signaling.