Frontiers in Neurology (Oct 2014)
Long Memory Processes Are Revealed in the Dynamics of the Epileptic Brain
Abstract
The pattern of epileptic seizures is often considered unpredictable, and the interval between events without correlation. A number of studies have examined the possibility that seizure activity, both in terms of event magnitude and inter-event intervals, respect a power-law relationship. Such relationships are found in a variety of natural and man-made systems, such as earthquakes or Internet traffic, and describe the relationship between the magnitude of an event and the number of events. We postulated that human inter-seizure intervals would follow a power law relationship, and furthermore that evidence for the existence of a long memory process could be established in this relationship. We studied 8 patients who had long-term ambulatory EEG data recorded as part of the assessment of a novel seizure prediction device, in which data was sufficiently stationary in 6. We demonstrated that a power law relationship could be established in these patients, β=1.5. In 5/6 subjects we found evidence of long memory process, spanning time scales from 30 minutes to 40 days, using a wavelet based analysis technique. The Hurst exponent values ranged from 0.5 to 0.76. We conclude there is evidence of long memory processes in adult human epilepsy, with a heterogeneous range of time scales demonstrated between individuals. This finding may provide evidence of phase-transitions underlying the dynamics of epilepsy.
Keywords