Applied Sciences (Mar 2025)

Comparative Analysis of AlexNet, ResNet-50, and VGG-19 Performance for Automated Feature Recognition in Pedestrian Crash Diagrams

  • Baraah Qawasmeh,
  • Jun-Seok Oh,
  • Valerian Kwigizile

DOI
https://doi.org/10.3390/app15062928
Journal volume & issue
Vol. 15, no. 6
p. 2928

Abstract

Read online

Pedestrians, as the most vulnerable road users in traffic crashes, prompt transportation researchers and urban planners to prioritize pedestrian safety due to the elevated risk and growing incidence of injuries and fatalities. Thorough pedestrian crash data are indispensable for safety research, as the most detailed descriptions of crash scenes and pedestrian actions are typically found in crash narratives and diagrams. However, extracting and analyzing this information from police crash reports poses significant challenges. This study tackles these issues by introducing innovative image-processing techniques to analyze crash diagrams. By employing cutting-edge technological methods, the research aims to uncover and extract hidden features from pedestrian crash data in Michigan, thereby enhancing the understanding and prevention of such incidents. This study evaluates the effectiveness of three Convolutional Neural Network (CNN) architectures—VGG-19, AlexNet, and ResNet-50—in classifying multiple hidden features in pedestrian crash diagrams. These features include intersection type (three-leg or four-leg), road type (divided or undivided), the presence of marked crosswalk (yes or no), intersection angle (skewed or unskewed), the presence of Michigan left turn (yes or no), and the presence of nearby residentials (yes or no). The research utilizes the 2020–2023 Michigan UD-10 pedestrian crash reports, comprising 5437 pedestrian crash diagrams for large urbanized areas and 609 for rural areas. The CNNs underwent comprehensive evaluation using various metrics, including accuracy and F1-score, to assess their capacity for reliably classifying multiple pedestrian crash features. The results reveal that AlexNet consistently surpasses other models, attaining the highest accuracy and F1-score. This highlights the critical importance of choosing the appropriate architecture for crash diagram analysis, particularly in the context of pedestrian safety. These outcomes are critical for minimizing errors in image classification, especially in transportation safety studies. In addition to evaluating model performance, computational efficiency was also considered. In this regard, AlexNet emerged as the most efficient model. This understanding is precious in situations where there are limitations on computing resources. This study contributes novel insights to pedestrian safety research by leveraging image processing technology, and highlights CNNs’ potential use in detecting concealed pedestrian crash patterns. The results lay the groundwork for future research, and offer promise in supporting safety initiatives and facilitating countermeasures’ development for researchers, planners, engineers, and agencies.

Keywords