Minerals (Jul 2020)

Paleoproterozoic Adakitic Rocks in Qingchengzi District, Northeastern Jiao-Liao-Ji Belt: Implications for Petrogenesis and Tectonism

  • Jian Li,
  • Hanlun Liu,
  • Keyong Wang,
  • Wenyan Cai

DOI
https://doi.org/10.3390/min10080684
Journal volume & issue
Vol. 10, no. 8
p. 684

Abstract

Read online

Herein, zircon U-Pb geochronology, Lu-Hf isotopes, and whole-rock major and trace element geochemistry are presented for two Palaeoproterozoic granitic rocks in Qingchengzi district, northeastern Jiao-Liao-Ji Belt (JLJB). These new geochronological and geochemical data provide reference clues for exploring the petrogenesis and tectonic setting of Paleoproterozoic magmatic rocks in the Qingchengzi district, which further constrain the tectonic nature of the JLJB. Our zircon U-Pb dating denotes that the Paleoproterozoic magmatic events in the Qingchengzi district were emplaced at ~2163 Ma and ~1854 Ma, represented by granite porphyry and biotite granite, respectively. Geochemically, these Palaeoproterozoic rocks are characterized by high Sr (760–842 ppm), SiO2 (69.72–70.89 wt.%), and Al2O3 (15.53–16.78 wt.%) contents, low Y (2.1–9.0 ppm) and Yb (0.25–0.80 ppm) contents, which indicate an adakite affinity. Combined with Hf isotopic composition (εHf(t) = −1.5~+4.8; TDM2 = 3109~2560 Ma), we believe that the Paleoproterozoic adakitic magma originated from partial melting of the thickened lower crust material in the Meso-Neoarchean. Moreover, these rocks are enriched in light rare earth elements and large ion lithophilic elements (e.g., K, Rb, and Cs), and depleted in heavy rare earth elements and high field strength elements (e.g., Nb and Ta). These features are similar to magmatic rocks formed in an arc environment (either island arc or active continental margin) and are not consistent with an intraplate/intracontinental environment. According to this study and previous research results, we conclude that the arc–continent collision model is conducive to the Paleoproterozoic tectonic attribute of the JLJB, and the oceanic crust subduction between the Namgrim and Longgang blocks may have induced the widespread occurrence of magmatic events in the region.

Keywords