Frontiers in Plant Science (Aug 2022)

Individual and combinatorial effects of SNP and NaHS on morpho-physio-biochemical attributes and phytoextraction of chromium through Cr-stressed spinach (Spinacia oleracea L.)

  • Jing Ma,
  • Muhammad Hamzah Saleem,
  • Ghulam Yasin,
  • Sahar Mumtaz,
  • Freeha Fatima Qureshi,
  • Baber Ali,
  • Sezai Ercisli,
  • Sadeq K. Alhag,
  • Sadeq K. Alhag,
  • Ahmed Ezzat Ahmed,
  • Ahmed Ezzat Ahmed,
  • Dan C. Vodnar,
  • Iqbal Hussain,
  • Romina Alina Marc,
  • Fu Chen

DOI
https://doi.org/10.3389/fpls.2022.973740
Journal volume & issue
Vol. 13

Abstract

Read online

Chromium (Cr) is a toxic heavy metal that contaminates soil and water resources after its discharge from different industries. A pot experiment was conducted to determine the effects of single and/or combined application of sodium nitroprusside (SNP) (250 μM) and sodium hydrogen sulfide (NaHS) (1 mM) on growth, photosynthetic pigments, gas exchange characteristics, oxidative stress biomarkers, antioxidant machinery (enzymatic and non-enzymatic antioxidants), ion uptake, organic acid exudation, and Cr uptake of spinach (Spinacia oleracea L.) exposed to severe Cr stress [Cr: 0 (no Cr), 150, and 300 μM]. Our results depicted that Cr addition to the soil significantly (P < 0.05) decreased plant growth and biomass, gas exchange attributes, and mineral uptake by S. oleracea when compared to the plants grown without the addition of Cr. However, Cr toxicity boosted the production of reactive oxygen species (ROS) by increasing the content of malondialdehyde (MDA), which is the indication of oxidative stress in S. oleracea, and was also manifested by hydrogen peroxide (H2O2) content and electrolyte leakage to the membrane-bound organelles. The results showed that the activities of various antioxidative enzymes, such as superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and the content of non-enzymatic antioxidants, such as phenolic, flavonoid, ascorbic acid, and anthocyanin, initially increased with an increase in the Cr concentration in the soil. The results also revealed that the levels of soluble sugar, reducing sugar, and non-reducing sugar were decreased in plants grown under elevating Cr levels, but the accumulation of the metal in the roots and shoots of S. oleracea, was found to be increased, and the values of bioaccumulation factor were <1 in all the Cr treatments. The negative impacts of Cr injury were reduced by the application of SNP and NaHS (individually or combined), which increased plant growth and biomass, improved photosynthetic apparatus, antioxidant enzymes, and mineral uptake, as well as diminished the exudation of organic acids and oxidative stress indicators in roots of S. oleracea by decreasing Cr toxicity. Here, we conclude that the application of SNP and NaHS under the exposure to Cr stress significantly improved plant growth and biomass, photosynthetic pigments, and gas exchange characteristics; regulated antioxidant defense system and essential nutrient uptake; and balanced organic acid exudation pattern in S. oleracea.

Keywords