Lipids in Health and Disease (Sep 2024)

The mediating effect of TyG-related indicators between long-term exposure to particulate matter and cardiovascular disease: evidence from a national longitudinal cohort study

  • Jiamin Xu,
  • Tongle Yin,
  • Mengshan Pan,
  • Li Qin,
  • Lu Zhang,
  • Xiaoyan Wang,
  • Weijun Zheng,
  • Cuiqing Liu,
  • Rucheng Chen

DOI
https://doi.org/10.1186/s12944-024-02305-8
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Ambient particulate matter (PM) exposure is recognized as a risk factor for cardiovascular disease (CVD). However, the extent to which PM exposure is associated with CVD via triglyceride glucose (TyG)-related indicators remains unknown. This study examines the relationship between long-term PM exposure and CVD events, further assessing whether TyG-related indicators mediate this association. Methods This cohort study involved 7,532 individuals aged at least 45 years who were not diagnosed with CVD in 2011 from the China Longitudinal Study of Health and Retirement (CHARLS) and were followed up for the occurrence of CVD until 2020. The annual PM concentration data at the city level, with aerodynamic diameters ≤ 1 μm (PM1), ≤ 2.5 μm (PM2.5), and ≤ 10 μm (PM10), were obtained from the ChinaHighAirPollutants (CHAP). The average concentration of PM in the 3 years before the baseline survey in 2011 was defined as the long-term exposure level of the individual. The relationship between PM exposure and CVD incidence was examined via Cox proportional hazards models, with a focus on probing the role of TyG-related indicators through mediation analysis. Results A total of 1,865 individuals with CVD were diagnosed over the span of a 7.4-year follow-up period. The 3-year average concentrations before baseline were 31.29 µg/m³ for PM1, 56.03 µg/m³ for PM2.5, and 95.73 µg/m³ for PM10. In fully adjusted model, the Cox proportional hazards models revealed that an increase of 10 µg/m³ in the PM1, PM2.5, and PM10 exposure concentrations corresponded to elevated CVD risk, with HRs (95% CI) of 1.135 (1.078–1.195), 1.092 (1.062–1.123), and 1.075 (1.059–1.090), respectively. Mediation analyses further suggested that the correlation between PM exposure and CVD could be partly mediated via TyG-BMI, TyG-WC, and TyG-WHtR, with mediation proportions varying from 5.54 to 15.30%. Conclusion A significant correlation was observed between long-term PM exposure and increased CVD risk, with TyG-related indicators, such as TyG-BMI, TyG-WC, and TyG-WHtR, partially mediating this relationship.

Keywords