IEEE Access (Jan 2017)

Dynamic Modeling and Active Morphing Trajectory-Attitude Separation Control Approach for Gull-Wing Aircraft

  • Tianhao Guo,
  • Zhongxi Hou,
  • Bingjie Zhu

DOI
https://doi.org/10.1109/ACCESS.2017.2743059
Journal volume & issue
Vol. 5
pp. 17006 – 17019

Abstract

Read online

Morphings are usually used for aircrafts to achieve a better performance in variable environment, whereas this paper focuses on how to achieve a trajectory-attitude separation control effect with an active morphing strategy. Aimed at this target, a systemic work, including modeling, linearization, and control, is presented. An accurate nonlinear dynamic model of morphing aircraft is built with centroid dynamic equations, of which all the additional terms that stem from morphing are expatiated for gullwing aircraft. Then, a linear parameter varying (LPV) approach is applied to linearize the equations for a controller design. A state feedback with a feedforward H∞ control approach for an LPV system is proposed in this paper and is applied to the attitude control of gull-wing aircraft. Based on the stabilized aircraft attitude, a dynamic inversion control approach for the trajectory channels with active morphing is designed. The nonlinear simulation cases validate the feasibility of trajectory-attitude separation control with active morphing, as well as the performance of the control approach proposed in this paper.

Keywords