Cell Transplantation (Mar 1998)

Morphological and Functional Evidence for Enhanced Growth and Potassium-Evoked Dopamine Release in Striatal Grafts Innervated with a Patchy Growth Pattern. an in Oculo Nigrostriatal Cograft Study

  • Nina Vidal,
  • Lars Björklund,
  • Ingrid Strömberg

DOI
https://doi.org/10.1177/096368979800700205
Journal volume & issue
Vol. 7

Abstract

Read online

During development of the nigrostriatal dopamine system, a patchy and a diffuse type of striatal innervation pattern can be seen. It has been suggested that when fetal dopaminergic neurons, obtained from the ventral mesencephalon (VM), are grafted adjacent to mature striatal tissue, only the diffuse growth is induced. Intraocular grafting studies have indicated that the dopaminergic growth pattern might be influenced by the age of the target area, the lateral ganglionic eminence (LGE). In this study VM grafts were allowed to innervate LGE grafts of different ages. Fetal VM was implanted next to 2-wk-old or 26-day-old striatal in oculo grafts, and the resulting dopaminergic innervation of the striatal grafts was studied using tyrosine hydroxylase (TH) immunohistochemistry. In striatal grafts receiving innervation at the age of 2 wk in oculo, a patchy TH-immunoreactive growth pattern was found, while in striatal grafts innervated at the age of 26 days mainly the diffuse growth pattern was seen. This implies that grafted striatum reached maturity at approximately 1 mo of age. The age of the dopaminergic neurons at dissection and grafting was also studied concerning the ability to induce patchy growth into mature striatum. Thus, VM dissected from 13- and 18-mm fetuses was implanted to either 4-mo-old LGE (grafted in sequence) or to LGE from the same fetus (grafted simultaneously) as controls. TH-positive innervation of striatal tissue, evaluated 4 wk after implantation of VM, revealed a patchy growth pattern in LGE grafted simultaneously with 13- and 18-mm VM. However, when the striatum was mature at the time of innervation, diffuse growth was observed in striatum innervated by VM dissected from 13-mm fetuses. Interestingly, patchy growth was noted in striatal areas close to VM grafts when the dopaminergic neurons were derived from older fetuses (CRL 18 mm). Furthermore, potassium-induced dopamine release was greater in striatal grafts exhibiting the patchy growth than those showing the diffuse pattern of innervation. In conclusion, patchy dopaminergic growth can be induced in mature striatal tissue by grafting VM from older fetuses. Functionally, potassium-evoked dopamine release is enhanced in dopaminergic patches. These results have implications in terms of finding ways to induce patchy growth when grafting to the mature striatum of patients suffering from Parkinson's disease.