Revista Facultad de Ingeniería (Apr 2023)

Algoritmo de gradiente 2D para la reducción del ruido en imágenes radiológicas

  • Jhonatan Collazos-Ramírez,
  • Pablo-Emilio Jojoa,
  • Juan-Pablo Hoyos

DOI
https://doi.org/10.19053/01211129.v32.n65.2023.16178
Journal volume & issue
Vol. 32, no. 65

Abstract

Read online

En áreas como el procesamiento de imágenes biomédicas las técnicas o métodos para recuperar el contenido en señales que están contaminadas con ruido son indispensables. Una de ellas ha sido el filtrado adaptativo que, al ajustarse a la señal deseada a través de la actualización en tiempo real de los coeficientes permite el mejoramiento y la deconvolución en la recuperación de imágenes degradadas o contaminadas, logrando atraer la atención de investigadores en problemas inversos. En este artículo el algoritmo del gradiente 2D-AR es utilizado en la reducción de ruido en imágenes radiológicas dentales, para lo cual se realizan simulaciones para obtener la mejor configuración de los hiperparámetros y se realiza un análisis estadístico de los valores obtenidos. Con base en los resultados de la simulación y las métricas establecidas, se demuestra que el algoritmo logra una reducción del ruido estadísticamente superior que los otros algoritmos del gradiente 2D (LMS y NLMS). En áreas como el procesamiento de imágenes biomédicas las técnicas o métodos para recuperar el contenido en señales que están contaminadas con ruido son indispensables. Una de ellas ha sido el filtrado adaptativo que, al ajustarse a la señal deseada a través de la actualización en tiempo real de los coeficientes permite el mejoramiento y la deconvolución en la recuperación de imágenes degradadas o contaminadas, logrando atraer la atención de investigadores en problemas inversos. En este artículo el algoritmo del gradiente 2D-AR es utilizado en la reducción de ruido en imágenes radiológicas dentales, para lo cual se realizan simulaciones para obtener la mejor configuración de los hiperparámetros y se realiza un análisis estadístico de los valores obtenidos. Con base en los resultados de la simulación y las métricas establecidas, se demuestra que el algoritmo logra una reducción del ruido estadísticamente superior que los otros algoritmos del gradiente 2D (LMS y NLMS).

Keywords