Microbiota Composition of Mucosa and Interactions between the Microbes of the Different Gut Segments Could Be a Factor to Modulate the Growth Rate of Broiler Chickens
Valéria Farkas,
Gábor Csitári,
László Menyhárt,
Nikoletta Such,
László Pál,
Ferenc Husvéth,
Mohamed Ali Rawash,
Ákos Mezőlaki,
Károly Dublecz
Affiliations
Valéria Farkas
Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
Gábor Csitári
Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
László Menyhárt
Institute of Mathematics and Basic Science, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
Nikoletta Such
Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
László Pál
Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
Ferenc Husvéth
Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
Mohamed Ali Rawash
Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
Ákos Mezőlaki
Agrofeed Ltd., Duna Kapu Square 10, 9022 Győr, Hungary
Károly Dublecz
Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
The study reported here aimed to determine whether correlations can be found between the intestinal segment-related microbiota composition and the different growing intensities of broiler chickens. The bacterial community structures of three intestinal segments (jejunum chymus—JC, jejunum mucosa—JM, caecum chymus—CC) from broiler chickens with low body weight (LBW) and high body weight (HBW) were investigated. Similar to the previous results in most cases, significant differences were found in the bacteriota diversity and composition between the different sampling places. However, fewer body weight (BW)-related differences were detected. In the JM of the HBW birds, the Bacteroidetes/Firmicutes ratio (B/F) was also higher. At the genus level significant differences were observed between the BW groups in the relative abundance of Enterococcus, mainly in the JC; Bacteroides and Ruminococcaceae UCG-010, mainly in the JM; and Ruminococcaceae UCG-013, Negativibacillus, and Alistipes in the CC. These genera and others (e.g., Parabacteroides and Fournierella in the JM; Butyricoccus, Ruminiclostridium-9, and Bilophila in the CC) showed a close correlation with BW. The co-occurrence interaction results in the JC revealed a correlation between the genera of Actinobacteria (mainly with Corynebacterium) and Firmicutes Bacilli classes with different patterns in the two BW groups. In the JM of LBW birds, two co-occurring communities were found that were not identifiable in HBW chickens and their members belonged to the families of Ruminococcaceae and Lachnospiraceae. In the frame of the co-occurrence evaluation between the jejunal content and mucosa, the two genera (Trichococcus and Oligella) in the JC were found to have a significant positive correlation with other genera of the JM only in LBW chickens.