工程科学学报 (Mar 2020)
Redistribution of Mn between α-Fe matrix and θ cementite during long-term thermal aging in a low alloy steel
Abstract
The addition of certain amounts of Mn in steel has long been known to retard the growth and coarsening of cementite during tempering, which can increase the tempering resistance of carbon steels. It is now well-established that the retarding effect is inherently correlated with the partitioning of Mn between ferrite (α) matrix and cementite (θ). According to the equilibrium thermodynamics, Mn would diffuse from α-Fe matrix to θ cementite after the initial stage of tempering until equilibrium is reached. However, the manner in which Mn diffuses from α-Fe matrix to θ cementite is unclear, which is key in understanding the mechanism in which the partitioning of Mn can retard the growth and coarsening of cementite. Therefore, the measurement of Mn content across the α-Fe/θ interface is of importance to achieve this goal. In this study, the redistribution characteristics of Mn between α-Fe matrix and θ cementite after long-term aging at 370 or 400 °C with quenched–tempered or quenched samples of reactor pressure vessel model steel was investigated by atom probe tomography. Results show that Mn diffuses from the α-Fe matrix and enriches in the θ cementite under all heat treatment conditions. The concentration of Mn in cementite is the highest when the specimen is thermally aged directly after quenching. Moreover, Mn is not distributed uniformly within cementite after long-term aging at 400 °C for 35000 h. Instead, a Mn-segregated zone exists within cementite adjacent to the α-Fe/θ interface, with concentration increasing by aging temperature, which acts as a barrier to the coarsening of cementite by hindering the dissolution of small-sized cementite. The redistribution characteristics of Mn between the two phases is correlated with the difference of diffusivities in the α-Fe matrix and θ cementite during thermal aging, and the diffusivity of Mn in θ cementite is slower than that in α-Fe matrix.
Keywords