PLoS ONE (Jan 2012)

Methicillin-resistant Staphylococcus capitis with reduced vancomycin susceptibility causes late-onset sepsis in intensive care neonates.

  • Jean-Philippe Rasigade,
  • Olivia Raulin,
  • Jean-Charles Picaud,
  • Charlotte Tellini,
  • Michele Bes,
  • Jacqueline Grando,
  • Mohamed Ben Saïd,
  • Olivier Claris,
  • Jerome Etienne,
  • Sylvestre Tigaud,
  • Frederic Laurent

DOI
https://doi.org/10.1371/journal.pone.0031548
Journal volume & issue
Vol. 7, no. 2
p. e31548

Abstract

Read online

BackgroundCoagulase-negative staphylococci, mainly Staphylococcus epidermidis, are the most frequent cause of late-onset sepsis (LOS) in the neonatal intensive care unit (NICU) setting. However, recent reports indicate that methicillin-resistant, vancomycin-heteroresistant Staphylococcus capitis could emerge as a significant pathogen in the NICU. We investigated the prevalence, clonality and vancomycin susceptibility of S. capitis isolated from the blood of NICU infants and compared these data to adult patients.Methodology/principal findingsWe conducted a retrospective laboratory-based survey of positive blood cultures in NICU infants ≥ 3 days of age (n = 527) and in adult ICU patients ≥ 18 years of age (n = 1473) who were hospitalized from 2004 to 2009 in two hospital centers in Lyon, France. S. capitis was the most frequent pathogen in NICU infants, ahead of S. epidermidis (39.1% vs. 23.5% of positive blood cultures, respectively). Conversely, S. capitis was rarely found in adult ICU patients (1.0%) compared to S. epidermidis (15.3%). S. capitis bloodstream isolates were more frequently resistant to methicillin when collected from NICU infants than from adult patients (95.6% vs. 53.3%, respectively). Furthermore, we collected and characterized 53 S. capitis bloodstream isolates from NICU infants and adult patients from six distant cities. All methicillin-resistant S. capitis isolates from NICU infants were clonally related as determined by pulsed-field gel electrophoresis. These isolates harbored a type V-related staphylococcal chromosomal cassette mec element, and constantly showed either vancomycin resistance (37.5%) or heteroresistance (62.5%). Conversely, the isolates that were collected outside of the NICU were genetically diverse and displayed much lower rates of vancomycin resistance and heteroresistance (7.7% and 23.1%, respectively).Conclusions/significanceA clonal population of methicillin-resistant S. capitis strains has spread into several French NICUs. These isolates exhibit reduced susceptibility to vancomycin, which is the most widely used antimicrobial agent in the NICU setting.