Computers (Apr 2019)
A Novel Dictionary-Driven Mental Spelling Application Based on Code-Modulated Visual Evoked Potentials
Abstract
Brain−computer interfaces (BCIs) based on code-modulated visual evoked potentials (c-VEPs) typically utilize a synchronous approach to identify targets (i.e., after preset time periods the system produces command outputs). Hence, users have only a limited amount of time to fixate a desired target. This hinders the usage of more complex interfaces, as these require the BCI to distinguish between intentional and unintentional fixations. In this article, we investigate a dynamic sliding window mechanism as well as the implementation of software-based stimulus synchronization to enable the threshold-based target identification for the c-VEP paradigm. To further improve the usability of the system, an ensemble-based classification strategy was investigated. In addition, a software-based approach for stimulus on-set determination is proposed, which allows for an easier setup of the system, as it reduces additional hardware dependencies. The methods were tested with an eight-target spelling application utilizing an n-gram word prediction model. The performance of eighteen participants without disabilities was tested; all participants completed word- and sentence spelling tasks using the c-VEP BCI with a mean information transfer rate (ITR) of 75.7 and 57.8 bpm, respectively.
Keywords