Green Processing and Synthesis (Feb 2022)
Fabrication of silicotungstic acid immobilized on Ce-based MOF and embedded in Zr-based MOF matrix for green fatty acid esterification
Abstract
In the present study, a facile solvothermal method was used for the synthesis of silicotungstic acid (HSiW) immobilized on Ce-based metal organic framework (Ce-BDC) and embedded in Zr-based metal-organic framework (UiO-66(Zr)) composite catalyst, namely, Ce-BDC@HSiW@UiO-66 for the production of biodiesel through green fatty acid esterification. The obtained hybrids were characterized by various characterization technologies, including Fourier transform infrared, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 physisorption, X-ray photoelectron spectroscopy, and temperature-programmed desorption of NH3 (NH3-TPD) analysis. The characterization analyses showed that the hybrids have been successfully synthesized. Also, the volume and pore size of UiO-66(Zr) were changed by introducing HSiW@Ce-BDC, and the resulting Ce-BDC@HSiW@UiO-66 possessed the mesoporous structure and relatively high surface area. Simultaneously, the NH3-TPD analysis of Ce-BDC@HSiW@UiO-66 reveals that the acid strength was increased in comparison with HSiW@Ce-BDC. In addition, the composite Ce-BDC@HSiW@UiO-66 demonstrated high catalytic activity, and the oleic acid esterification gave 81.5% conversion at optimum conditions of 0.2 g catalysts, 1:30 oleic acid to methanol molar ratio at 130°C for 4 h. More interestingly, after six recycling cycles, the reduction in the conversion rate was only 4.6%, indicating that Ce-BDC@HSiW@UiO-66 has excellent reusability. Our study provides an effective approach to synthesize multifunctional hybrids for green biofuel production.
Keywords