Journal of Translational Medicine (Jan 2024)
DEL-1: a promising treatment for AMD-associated ER stress in retinal pigment epithelial cells
Abstract
Abstract Background Age-related macular degeneration (AMD) is an irreversible eye disease that can cause blurred vision. Regular exercise has been suggested as a therapeutic strategy for treating AMD, but how exercise improves AMD is not yet understood. This study investigated the protective effects of developmental endothelial locus-1 (DEL-1), a myokine upregulated during exercise, on endoplasmic reticulum (ER) stress-induced injury in retinal pigment epithelial cells. Methods We evaluated the levels of AMPK phosphorylation, autophagy markers, and ER stress markers in DEL-1-treated human retinal pigment epithelial cells (hRPE) using Western blotting. We also performed cell viability, caspase 3 activity assays, and autophagosome staining. Results Our findings showed that treatment with recombinant DEL-1 dose-dependently reduced the impairment of cell viability and caspase 3 activity in tunicamycin-treated hRPE cells. DEL-1 treatment also alleviated tunicamycin-induced ER stress markers and VEGF expression. Moreover, AMPK phosphorylation and autophagy markers were increased in hRPE cells in the presence of DEL-1. However, the effects of DEL-1 on ER stress, VEGF expression, and apoptosis in tunicamycin-treated hRPE cells were reduced by AMPK siRNA or 3-methyladenine (3-MA), an autophagy inhibitor. Conclusions Our study suggests that DEL-1, a myokine, may have potential as a treatment strategy for AMD by attenuating ER stress-induced injury in retinal pigment epithelial cells.
Keywords