Heliyon (Sep 2024)
Prediction of high-risk prostate cancer based on the habitat features of biparametric magnetic resonance and the omics features of contrast-enhanced ultrasound
Abstract
Rationale and objectives: To predict high-risk prostate cancer (PCa) by combining the habitat features of biparametric magnetic resonance imaging (bp-MRI) with the omics features of contrast-enhanced ultrasound (CEUS). Materials and methods: This study retrospectively collected patients with PCa confirmed by histopathology from January 2020 to June 2023. All patients underwent bp-MRI and CEUS of the prostate, followed by a targeted and transrectal systematic prostate biopsy. The cases were divided into the intermediate-low-risk group (Gleason score ≤7, n = 59) and high-risk group (Gleason score ≥8, n = 33). Radiomics prediction models, namely, MRI_habitat, CEUS_intra, and MRI-CEUS models, were developed based on the habitat features of bp-MRI, the omics features of CEUS, and a merge of features of the two, respectively. Predicted probabilities, called radscores, were then obtained. Clinical-radiological indicators were screened to construct clinic models, which generated clinic scores. The omics–clinic model was constructed by combining the radscore of MRI-CEUS and the clinic score. The predictive performance of all the models was evaluated using the receiver operating characteristic curve. Results: The area under the curve (AUC) values of the MRI-CEUS model were 0.875 and 0.842 in the training set and test set, respectively, which were higher than those of the MR_habitat (training set: 0.846, test set: 0.813), CEUS_intra (training set: 0.801, test set: 0.743), and clinic models (training set: 0.722, test set: 0.611). The omics–clinic model achieved a higher AUC (train set: 0.986, test set: 0.898). Conclusions: The combination of the habitat features of bp-MRI and the omics features of CEUS can help predict high-risk PCa.