dplbnDE: An R package for discriminative parameter learning of Bayesian Networks by Differential Evolution
Alejandro Platas-López,
Alejandro Guerra-Hernández,
Francisco Grimaldo,
Nicandro Cruz-Ramírez,
Efrén Mezura-Montes,
Marcela Quiroz-Castellanos
Affiliations
Alejandro Platas-López
Instituto de Investigaciones en Inteligencia Artificial, Universidad Veracruzana, Xalapa, Ver., 91097, Mexico; Extensión Académica, Universidad Anáhuac Online, Ciudad de México, 01840, Mexico; Corresponding author at: Instituto de Investigaciones en Inteligencia Artificial, Universidad Veracruzana, Xalapa, Ver., 91097, Mexico.
Alejandro Guerra-Hernández
Instituto de Investigaciones en Inteligencia Artificial, Universidad Veracruzana, Xalapa, Ver., 91097, Mexico
Francisco Grimaldo
Departament d’Informàtica, Universitat de València, Burjassot, 46100, Spain
Nicandro Cruz-Ramírez
Instituto de Investigaciones en Inteligencia Artificial, Universidad Veracruzana, Xalapa, Ver., 91097, Mexico
Efrén Mezura-Montes
Instituto de Investigaciones en Inteligencia Artificial, Universidad Veracruzana, Xalapa, Ver., 91097, Mexico
Marcela Quiroz-Castellanos
Instituto de Investigaciones en Inteligencia Artificial, Universidad Veracruzana, Xalapa, Ver., 91097, Mexico
The dplbnDE R package is a novel tool that implements Differential Evolution strategies for training Bayesian Network parameters using Discriminative Learning. Focusing on optimizing the Conditional Log-Likelihood rather than the log-likelihood, dplbnDE enhances the performance of Bayesian Networks models in various applications. The package offers four main functions (DErand, DEbest, jade, and lshade) that implement different DE variants, providing users with a versatile and efficient approach to Bayesian Network parameter learning. dplbnDE has the potential to impact data-driven industries by improving predictive capabilities and decision-making processes in fields such as healthcare, finance, and supply chain management. The package and its code are made freely available.