Comptes Rendus. Physique (Oct 2021)
Photoinduced charge density wave phase in 1T-TaS$_2$: growth and coarsening mechanisms
Abstract
Recent experiments have shown that the high-temperature incommensurate (I) charge density wave (CDW) phase of 1T-TaS$_2$ can be photoinduced from the lower-temperature, nearly commensurate CDW state. In a first step, several independent regions exhibiting I-CDW phase modulations nucleate and grow. After coalescence, these regions form a multidomain I-CDW phase that undergoes coarsening dynamics, i.e. a progressive increase of the domain size or I-CDW correlation length. Using time-resolved X-ray diffraction, we show that the wave vector of the photoinduced I-CDW phase is shorter than in the I-CDW phase at equilibrium, and progressively increases towards its equilibrium value as the correlation length increases. We interpret this behaviour as a consequence of a self-doping of the photoinduced I-CDW, following the presence of trapped electrons in the vicinity of CDW dislocation sites. Putting together results of the present and past experiments, we develop a scenario in which the I-CDW dislocations are created during the coalescence of the I-CDW phase regions.
Keywords