PLoS ONE (Jan 2023)

Effects of synthetic and environmentally friendly fungicides on powdery mildew management and the phyllosphere microbiome of cucumber.

  • Ping-Hu Wu,
  • Hao-Xun Chang,
  • Yuan-Min Shen

DOI
https://doi.org/10.1371/journal.pone.0282809
Journal volume & issue
Vol. 18, no. 3
p. e0282809

Abstract

Read online

Modern agricultural practices rely on synthetic fungicides to control plant disease, but the application of these fungicides has raised concerns regarding human and environmental health for many years. As a substitute, environmentally friendly fungicides have been increasingly introduced as alternatives to synthetic fungicides. However, the impact of these environmentally friendly fungicides on plant microbiomes has received limited attention. In this study, we used amplicon sequencing to compare the bacterial and fungal microbiomes in the leaves of powdery mildew-infected cucumber after the application of two environmentally friendly fungicides (neutralized phosphorous acid (NPA) and sulfur) and one synthetic fungicide (tebuconazole). The phyllosphere α-diversity of both the bacterial and fungal microbiomes showed no significant differences among the three fungicides. For phyllosphere β-diversity, the bacterial composition exhibited no significant differences among the three fungicides, but fungal composition was altered by the synthetic fungicide tebuconazole. While all three fungicides significantly reduced disease severity and the incidence of powdery mildew, NPA and sulfur had minimal impacts on the phyllosphere fungal microbiome relative to the untreated control. Tebuconazole altered the phyllosphere fungal microbiome by reducing the abundance of fungal OTUs such as Dothideomycetes and Sordariomycetes, which included potentially beneficial endophytic fungi. These results indicated that treatments with the environmentally friendly fungicides NPA and sulfur have fewer impacts on the phyllosphere fungal microbiome while maintaining the same control efficacy as the synthetic fungicide tebuconazole.