Nature Communications (Jul 2024)

Serotonin reuptake inhibitors improve muscle stem cell function and muscle regeneration in male mice

  • Mylène Fefeu,
  • Michael Blatzer,
  • Anita Kneppers,
  • David Briand,
  • Pierre Rocheteau,
  • Alexandre Haroche,
  • David Hardy,
  • Mélanie Juchet-Martin,
  • Anne Danckaert,
  • François Coudoré,
  • Abdulkarim Tutakhail,
  • Corinne Huchet,
  • Aude Lafoux,
  • Rémi Mounier,
  • Olivier Mir,
  • Raphaël Gaillard,
  • Fabrice Chrétien

DOI
https://doi.org/10.1038/s41467-024-50220-4
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Serotonin reuptake inhibitor antidepressants such as fluoxetine are widely used to treat mood disorders. The mechanisms of action include an increase in extracellular level of serotonin, neurogenesis, and growth of vessels in the brain. We investigated whether fluoxetine could have broader peripheral regenerative properties. Following prolonged administration of fluoxetine in male mice, we showed that fluoxetine increases the number of muscle stem cells and muscle angiogenesis, associated with positive changes in skeletal muscle function. Fluoxetine also improved skeletal muscle regeneration after single and multiples injuries with an increased muscle stem cells pool and vessel density associated with reduced fibrotic lesions and inflammation. Mice devoid of peripheral serotonin treated with fluoxetine did not exhibit beneficial effects during muscle regeneration. Specifically, pharmacological, and genetic inactivation of the 5-HT1B subtype serotonin receptor also abolished the enhanced regenerative process induced by fluoxetine. We highlight here a regenerative property of serotonin on skeletal muscle.