Cross-Linked Polyvinylimidazole Complexed with Heteropolyacid Clusters for Deep Oxidative Desulfurization
Zhuoyi Ren,
Jiangfen Sheng,
Qibin Yuan,
Yizhen Su,
Linhua Zhu,
Chunyan Dai,
Honglei Zhao
Affiliations
Zhuoyi Ren
Engineering Research Center of Tropical Marine Functional Polymer Materials of Hainan Province, Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Organic Polymers of Haikou, Hainan Normal University, Haikou 571158, China
Jiangfen Sheng
Jiangsu Jitri Carbon Fiber & Composite Application Technologies Research Institute Co., Ltd., Changzhou 213000, China
Qibin Yuan
Engineering Research Center of Tropical Marine Functional Polymer Materials of Hainan Province, Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Organic Polymers of Haikou, Hainan Normal University, Haikou 571158, China
Yizhen Su
Engineering Research Center of Tropical Marine Functional Polymer Materials of Hainan Province, Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Organic Polymers of Haikou, Hainan Normal University, Haikou 571158, China
Linhua Zhu
Engineering Research Center of Tropical Marine Functional Polymer Materials of Hainan Province, Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Organic Polymers of Haikou, Hainan Normal University, Haikou 571158, China
Chunyan Dai
Engineering Research Center of Tropical Marine Functional Polymer Materials of Hainan Province, Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Key Laboratory of Functional Organic Polymers of Haikou, Hainan Normal University, Haikou 571158, China
Honglei Zhao
Hainan Lesso Technology Industrial Co., Ltd., Dingan 571200, China
The combustion of fuel with high sulfur concentrations produces a large number of sulfur oxides (SOx), which have a range of negative effects on human health and life. The preparation of catalysts with excellent performance in the oxidative desulfurization (ODS) process is highly effective for reducing SOx production. In this paper, cross-linked polyvinylimidazole (VE) was successfully created using a simple ontology aggregation method, after which a catalyst of polyvinylimidazolyl heteropolyacid clusters (VE-HPA) was prepared by adding heteropolyacid clusters. Polyvinylimidazolyl-phosphotungstic acid (VE-HPW) showed an outstanding desulfurization performance, and the desulfurization efficiency reached 99.68% in 60 min at 50 °C with H2O2 as an oxidant. Additionally, the catalyst exhibited recyclability nine consecutive times and remained stable, with a removal rate of 98.60%. The reaction mechanism was eventually proposed with the assistance of the free radical capture experiment and GC-MS analysis.