RIA: Revista Investigaciones Agropecuarias (Jan 2023)
Incorporation of environmental covariates to nonlinear mixed models describing fruit growth
Abstract
El pronóstico de cosecha es un gran desafío en la producción de peras. Estimar el tamaño de los frutos a partir de curvas de crecimiento permite predecir tanto la cantidad como la calidad de la fruta para cosecha. Este trabajo tuvo como objetivo ajustar modelos mixtos no lineales multiniveles (MMNL) basados en la curva logística para describir el crecimiento de peras “William´s” en el Alto Valle de Río Negro y Neuquén, Argentina. Los modelos ajustados incorporaron diferentes índices termoacumulativos que contemplan los efectos de la temperatura en la fisiología del crecimiento de los frutos. De esta manera, se logra no solo describir el crecimiento de los frutos, sino también se pueden observar las variaciones ambientales a lo largo de las temporadas de crecimiento. El estudio se realizó en perales “William´s” durante 16 temporadas. Se seleccionaron e identificaron al azar numerosos árboles y frutos. A cada fruto se le midió su diámetro ecuatorial semanalmente con un calibre digital electrónico. Los datos climáticos se obtuvieron de la estación meteorológica del INTA Alto Valle y los índices termoacumulativos se calcularon a partir de los datos de temperaturas. Los mejores modelos fueron seleccionados según los criterios de información. El MMNL multinivel permitió discernir y cuantificar las fuentes de variabilidad estocástica en diferentes niveles, lo que permitió obtener mejores criterios de información en comparación con los modelos que solo consideraron un único nivel de variabilidad entre los efectos aleatorios. La incorporación de índices termoacumulativos mejoró notablemente la performance de los modelos obtenidos.
Keywords