Mathematics (Aug 2023)

Multi-Corpus Learning for Audio–Visual Emotions and Sentiment Recognition

  • Elena Ryumina,
  • Maxim Markitantov,
  • Alexey Karpov

DOI
https://doi.org/10.3390/math11163519
Journal volume & issue
Vol. 11, no. 16
p. 3519

Abstract

Read online

Recognition of emotions and sentiment (affective states) from human audio–visual information is widely used in healthcare, education, entertainment, and other fields; therefore, it has become a highly active research area. The large variety of corpora with heterogeneous data available for the development of single-corpus approaches for recognition of affective states may lead to approaches trained on one corpus being less effective on another. In this article, we propose a multi-corpus learned audio–visual approach for emotion and sentiment recognition. It is based on the extraction of mid-level features at the segment level using two multi-corpus temporal models (a pretrained transformer with GRU layers for the audio modality and pre-trained 3D CNN with BiLSTM-Former for the video modality) and on predicting affective states using two single-corpus cross-modal gated self-attention fusion (CMGSAF) models. The proposed approach was tested on the RAMAS and CMU-MOSEI corpora. To date, our approach has outperformed state-of-the-art audio–visual approaches for emotion recognition by 18.2% (78.1% vs. 59.9%) for the CMU-MOSEI corpus in terms of the Weighted Accuracy and by 0.7% (82.8% vs. 82.1%) for the RAMAS corpus in terms of the Unweighted Average Recall.

Keywords