Scientific Reports (Oct 2024)
Multi-stage cascade GAN for synthesis of contrast enhancement CT aorta images from non-contrast CT
Abstract
Abstract Recently in diagnosis of Aortic dissection (AD), the synthesis of contrast enhanced CT (CE-CT) images from non-contrast CT (NC-CT) images is an important topic. Existing methods have achieved some results but are unable to synthesize a continuous and clear intimal flap on NC-CT images. In this paper, we propose a multi-stage cascade generative adversarial network (MCGAN) to explicitly capture the features of the intimal flap for a better synthesis of aortic dissection images. For the intimal flap with variable shapes and more detailed features, we extract features in two ways: dense residual attention blocks (DRAB) are integrated to extract shallow features and UNet is employed to extract deep features; then deep features and shallow features are cascaded and fused. For incomplete flaps or lack of details, we use spatial attention and channel attention to extract key features and locations. At the same time, multi-scale fusion is used to ensure the continuity of the intimal flap. We perform the experiment on a set of 124 patients (62 with AD and 62 without AD). The evaluation results show that the synthesized images have the same characteristics as the real images and achieves better results than the popular methods.
Keywords