Leida xuebao (Dec 2023)

A Radar Anti-jamming Method under Multi-jamming Scenarios Based on Deep Reinforcement Learning in Complex Domains

  • Feng XIE,
  • Huanyu LIU,
  • Xikun HU,
  • Ping ZHONG,
  • Junbao LI

DOI
https://doi.org/10.12000/JR23139
Journal volume & issue
Vol. 12, no. 6
pp. 1290 – 1304

Abstract

Read online

In modern electronic warfare, the jamming environment of radar is more complex than ever. The airborne jammer adapts its jamming method based on diverse raid missions and stages. Recently, the reinforcement learning–based radar anti-jamming method has made some progress in the confrontation scenario of single jamming; however, the gap with respect to actual complex multi-jamming scenarios is large. To address this issue, this paper proposes a multi-jamming scenario radar anti-jamming method based on deep reinforcement learning in the complex domain to optimize the anti-jamming strategy of frequency agile radar. First, according to the stage characteristics of the raid mission, noise spot jamming, range deception jamming , and dense false target forwarding jamming models are established. The three jamming sequence strategies were designed to simulate actual jamming scenarios. Second, a reinforcement learning reward function that integrates the signal-to-noise ratio and target trajectory integrity is constructed for the multi-jamming scenario model. Thus, a multi-jamming scenario radar anti-jamming method based on deep reinforcement learning in a complex domain is proposed, which is based on the complex domain characteristics of the jamming signal. Finally, radar anti-jamming simulation experiments are performed based on the three jamming sequence strategies. The results show that the proposed method can effectively deal with the main-lobe jamming problem of complex multi-jamming scenarios under time-sequence conditions. Moreover, the average decision-making accuracy was improved, and the average decision-making time was reduced to 405.3 ms compared with the two classical reinforcement learning algorithms.

Keywords