Agronomy (Jan 2022)

Biocontrol Potential and Catabolic Profile of Endophytic <i>Diaporthe eres</i> Strain 1420S from <i>Prunus domestica</i> L. in Poland—A Preliminary Study

  • Barbara Abramczyk,
  • Anna Marzec-Grządziel,
  • Jarosław Grządziel,
  • Ewa Król,
  • Anna Gałązka,
  • Wiesław Oleszek

DOI
https://doi.org/10.3390/agronomy12010165
Journal volume & issue
Vol. 12, no. 1
p. 165

Abstract

Read online

Recently, Diaporthe has been considered the most frequently isolated genera of endophytic fungi, having a broad spectrum of host plants and a worldwide distribution. The endophytic Diaporthe strain used in the present work came from the Fungal Collection of Phytopathology and Mycology Subdepartment, University of Life Sciences in Lublin (Poland), and was isolated from healthy Prunus domestica shoots during previous studies. Due to the possibility of using the Diaporthe endophytes as a promising option for plant disease management, the main goal of the research was to study the antagonistic effect of endophytic Diaporthe strain against six phytopathogens: Verticillium dahliae, Botrytis cinerea, Fusarium avenaceum, F. sprotrichioides, Alternaria alternata, and Trichothecium roseum based on the dual culture assay and to determine the catabolic profile of the endophyte by using Biolog FF Plates. The dual-culture test assay revealed the ability of the endophytic Diaporthe to limit the growth of all tested pathogens. The growth inhibition percentage ranged from 20% (V. dahliae) to 40% (T. roseum). A distinct zone of inhibition occurred between the endophytic Diaporthe and the pathogens T. roseum, V. dahliae, and B. cinerea in the co-growth combinations. As for the catabolic profile results, the most intensive utilization of carbon substrates was observed after 168 h of incubation. The growth of the analyzed strain was observed on 79 media containing carbohydrates, carboxylic acids, amino acids, amines and amides, polymers, and others. The most effective decomposition was observed in the polymers group, the least in amines and amides. Molecular identification indicated that this strain was closely related to the Diaporthe eres species complex.

Keywords