Ecology and Evolution (Nov 2021)

High‐altitude adaptation in vertebrates as revealed by mitochondrial genome analyses

  • Xibao Wang,
  • Shengyang Zhou,
  • Xiaoyang Wu,
  • Qinguo Wei,
  • Yongquan Shang,
  • Guolei Sun,
  • Xuesong Mei,
  • Yuehuan Dong,
  • Weilai Sha,
  • Honghai Zhang

DOI
https://doi.org/10.1002/ece3.8189
Journal volume & issue
Vol. 11, no. 21
pp. 15077 – 15084

Abstract

Read online

Abstract The high‐altitude environment may drive vertebrate evolution in a certain way, and vertebrates living in different altitude environments might have different energy requirements. We hypothesized that the high‐altitude environment might impose different influences on vertebrate mitochondrial genomes (mtDNA). We used selection pressure analyses and PIC (phylogenetic independent contrasts) analysis to detect the evolutionary rate of vertebrate mtDNA protein‐coding genes (PCGs) from different altitudes. The results showed that the ratio of nonsynonymous/synonymous substitutions (dN/dS) in the mtDNA PCGs was significantly higher in high‐altitude vertebrates than in low‐altitude vertebrates. The seven rapidly evolving genes were shared by the high‐altitude vertebrates, and only one positive selection gene (ND5 gene) was detected in the high‐altitude vertebrates. Our results suggest the mtDNA evolutionary rate in high‐altitude vertebrates was higher than in low‐altitude vertebrates as their evolution requires more energy in a high‐altitude environment. Our study demonstrates the high‐altitude environment (low atmospheric O2 levels) drives vertebrate evolution in mtDNA PCGs.

Keywords