Frontiers in Sports and Active Living (Oct 2021)

Identification of Neuromuscular Performance Parameters as Risk Factors of Non-contact Injuries in Male Elite Youth Soccer Players: A Preliminary Study on 62 Players With 25 Non-contact Injuries

  • Mathias Kolodziej,
  • Mathias Kolodziej,
  • Kevin Nolte,
  • Marcus Schmidt,
  • Tobias Alt,
  • Thomas Jaitner

DOI
https://doi.org/10.3389/fspor.2021.615330
Journal volume & issue
Vol. 3

Abstract

Read online

Introduction: Elite youth soccer players suffer increasing numbers of injuries owing to constantly increasing physical demands. Deficits in neuromuscular performance may increase the risk of injury. Injury risk factors need to be identified and practical cut-off scores defined. Therefore, the purpose of the study was to assess neuromuscular performance parameters within a laboratory-based injury risk screening, to investigate their association with the risk of non-contact lower extremity injuries in elite youth soccer players, and to provide practice-relevant cut-off scores.Methods: Sixty-two elite youth soccer players (age: 17.2 ± 1.1 years) performed unilateral postural control exercises in different conditions, isokinetic tests of concentric and eccentric knee extension and knee flexion (60°/s), isometric tests of hip adduction and abduction, and isometric tests of trunk flexion, extension, lateral flexion and transversal rotation during the preseason period. Non-contact lower extremities injuries were documented throughout 10 months. Risk profiling was assessed using a multivariate approach utilizing a Decision Tree model [Classification and Regression Tree (CART) method].Results: Twenty-five non-contact injuries were registered. The Decision Tree model selected the COP sway, the peak torque for knee flexion concentric, the functional knee ratio and the path of the platform in that hierarchical order as important neuromuscular performance parameters to discriminate between injured and non-injured players. The classification showed a sensitivity of 0.73 and a specificity of 0.91. The relative risk was calculated at 4.2, meaning that the risk of suffering an injury is four times greater for a player, who has been classified as injured by the Decision Tree model.Conclusion: Measuring static postural control, postural control under unstable condition and the strength of the thigh seem to enable a good indication of injury risk in elite youth soccer players. However, this finding has to be taken with caution due to a small number of injury cases. Nonetheless, these preliminary results may have practical implications for future directions in injury risk screening and in planning and developing customized training programs to counteract intrinsic injury risk factors in elite youth soccer players.

Keywords