Poultry Science (Jan 2025)
Effect of structured lipids as dietary supplements on the fatty acid profile, carcass yield, blood chemistry, and abdominal fat deposition of female broilers
Abstract
An experiment was conducted to evalute the effects of adding palm olein (POL), modified palm olein (high degree of acyl migration palm olein, H-AMD), and lard (total fatty acid saturation degree is similar to palm olein) to the diet of broilers. The study assessed production performance, fatty acid absorption, and abdominal fat deposition. A total of 100 one-week-old female broiler chicks were randomly assigned to three-tiered pens and fed five experimental diets. Enzymatic interesterification of POL causes acyl migration, transforming 1-palmitoyl-2,3-dioleoyl-sn-glycerol (sn-POO) and 1,3-dipalmitoyl-2-oleoyl-sn-glycerol (sn-POP) into 1,3-dioleoyl-2-palmitoyl-sn-glycerol (sn-OPO) and 1,2-dipalmitoyl-3-oleoyl-sn-glycerol (sn-PPO), which increases the saturated fatty acid content at the sn-2 position. Feeding broilers with this modified oil has improved the absorption effect of saturated fatty acids and increased the content of palmitic acid in abdominal tissue by 1.55%-1.69%. The impact on the content and positional distribution of fatty acids deposited in the body is limited. Low-density lipoprotein cholesterol (LDL-C) levels decreased by 34%, while high-density lipoprotein cholesterol (HDL-C) levels increased by 23%, resulting in a lower risk of atherosclerosis. No significant differences have been observed in carcass yield results of the POL and H-AMD groups. Compared with animal-derived oils such as lard which are also rich in saturated fatty acids at the sn-2 position, plant-derived oils such as POL and its modified products have a smaller effect on abdominal fat deposition.