Eiszeitalter und Gegenwart (Jul 2023)

Holocene forest and land-use history of the Erzgebirge, central Europe: a review of palynological data

  • K. Kaiser,
  • M. Theuerkauf,
  • F. Hieke

DOI
https://doi.org/10.5194/egqsj-72-127-2023
Journal volume & issue
Vol. 72
pp. 127 – 161

Abstract

Read online

The ongoing ecological conversion of mountain forests in central Europe from widespread Picea monocultures to mixed stands conceptually also requires a historical perspective on the very long-term, i.e. Holocene, vegetation and land-use dynamics. Detailed sources of information for this are palynological data. The Erzgebirge in focus here, with a maximum height of 1244 m a.s.l., represents an extreme case of extensive historical deforestation since the Middle Ages due to mining, metallurgy, and other industrial activities, as well as rural and urban colonisation. For this regional review we collected and evaluated 121 pollen diagrams of different stratigraphic, taxonomic, and chronological resolution. This number makes this region an upland area in central Europe with an exceptionally high density of palynological data. Using well-dated diagrams going back to the early Holocene, main regional vegetation phases were derived: the Betula–Pinus phase (ca. 11 600–10 200 cal yr BP), the Corylus phase (ca. 10 200–9000 cal yr BP), the Picea phase (ca. 9000–6000 cal yr BP), the Fagus–Picea phase (ca. 6000–4500 cal yr BP), the Abies–Fagus–Picea phase (ca. 4000–1000 cal yr BP), and the anthropogenic vegetation phase (ca. 1000–0 cal yr BP). Some diagrams show the presence or even continuous curves of potential pasture and meadow indicators from around 2000 cal BCE at the earliest. Even cereal pollen grains occur sporadically already before the High Medieval. These palynological indications of a local prehistoric human impact also in the higher altitudes find parallels in the (geo-)archaeologically proven Bronze Age tin placer mining and in the geochemically proven Iron Age metallurgy in the Erzgebirge. The pollen data show that immediately before the medieval clearing, i.e. beginning at the end of the 12th century CE, forests were mainly dominated by Fagus and Abies and complemented by Picea with increasing share towards the highest altitudes. According to historical data, the minimum of the regional forest cover was reached during the 17th–18th centuries CE. The dominance of Picea in modern pollen spectra is caused by anthropogenic afforestation in the form of monocultures since that time. Future palynological investigations, preferably within the framework of altitudinal transect studies, should aim for chronologically and taxonomically high-resolution and radiometrically well-dated pollen diagrams from the larger peatlands.