Scientific Reports (May 2023)

Sparse identification of Lagrangian for nonlinear dynamical systems via proximal gradient method

  • Adam Purnomo,
  • Mitsuhiro Hayashibe

DOI
https://doi.org/10.1038/s41598-023-34931-0
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 14

Abstract

Read online

Abstract The autonomous distillation of physical laws only from data is of great interest in many scientific fields. Data-driven modeling frameworks that adopt sparse regression techniques, such as sparse identification of nonlinear dynamics (SINDy) and its modifications, are developed to resolve difficulties in extracting underlying dynamics from experimental data. However, SINDy faces certain difficulties when the dynamics contain rational functions. The Lagrangian is substantially more concise than the actual equations of motion, especially for complex systems, and it does not usually contain rational functions for mechanical systems. Few proposed methods proposed to date, such as Lagrangian-SINDy we have proposed recently, can extract the true form of the Lagrangian of dynamical systems from data; however, these methods are easily affected by noise as a fact. In this study, we developed an extended version of Lagrangian-SINDy (xL-SINDy) to obtain the Lagrangian of dynamical systems from noisy measurement data. We incorporated the concept of SINDy and used the proximal gradient method to obtain sparse Lagrangian expressions. Further, we demonstrated the effectiveness of xL-SINDy against different noise levels using four mechanical systems. In addition, we compared its performance with SINDy-PI (parallel, implicit) which is a latest robust variant of SINDy that can handle implicit dynamics and rational nonlinearities. The experimental results reveal that xL-SINDy is much more robust than the existing methods for extracting the governing equations of nonlinear mechanical systems from data with noise. We believe this contribution is significant toward noise-tolerant computational method for explicit dynamics law extraction from data.