Scientific Reports (Nov 2023)
All-trans retinoic acid and dexamethasone regulate phagocytosis-related gene expression and enhance dead cell uptake in C2C12 myoblast cells
Abstract
Abstract Extensive mechanical stress frequently causes micro-traumas in skeletal muscle, followed by a regeneration period. The effective removal of dead myofibers is a prerequisite for proper regeneration, and several cell types, including professional phagocytes, were reported to be active in this process. Myoblasts express several molecules of the phagocytic machinery, such as BAI1, stabilin-2, and TAM (Tyro3, Axl, Mertk) tyrosine kinase receptors, but these molecules were reported to serve primarily cell fusion and survival, and their role in the phagocytosis was not investigated. Therefore, we aimed to investigate the in vitro phagocytic capacity of the C2C12 mouse myoblast cell line. RNA sequencing data were analyzed to determine the level and changes of phagocytosis-related gene expression during the differentiation process of C2C12 cells. To study the phagocytic capacity of myoblasts and the effect of dexamethasone, all-trans retinoic acid, hemin, and TAM kinase inhibitor treatments on phagocytosis, C2C12 cells were fed dead thymocytes, and their phagocytic capacity was determined by flow cytometry. The effect of dexamethasone and all-trans retinoic acid on phagocytosis-related gene expression was determined by quantitative PCR. Both undifferentiated and differentiated cells engulfed dead cells being the undifferentiated cells more effective. In line with this, we observed that the expression of several phagocytosis-related genes was downregulated during the differentiation process. The phagocytosis could be increased by dexamethasone and all-trans retinoic acid and decreased by hemin and TAM kinase inhibitor treatments. Our results indicate that myoblasts not only express phagocytic machinery genes but are capable of efficient dead cell clearance as well, and this is regulated similarly, as reported in professional phagocytes.