Sensors (Aug 2015)

Multiple-Layer Visibility Propagation-Based Synthetic Aperture Imaging through Occlusion

  • Tao Yang,
  • Jing Li,
  • Jingyi Yu,
  • Yanning Zhang,
  • Wenguang Ma,
  • Xiaomin Tong,
  • Rui Yu,
  • Lingyan Ran

DOI
https://doi.org/10.3390/s150818965
Journal volume & issue
Vol. 15, no. 8
pp. 18965 – 18984

Abstract

Read online

Heavy occlusions in cluttered scenes impose significant challenges to many computer vision applications. Recent light field imaging systems provide new see-through capabilities through synthetic aperture imaging (SAI) to overcome the occlusion problem. Existing synthetic aperture imaging methods, however, emulate focusing at a specific depth layer, but are incapable of producing an all-in-focus see-through image. Alternative in-painting algorithms can generate visually-plausible results, but cannot guarantee the correctness of the results. In this paper, we present a novel depth-free all-in-focus SAI technique based on light field visibility analysis. Specifically, we partition the scene into multiple visibility layers to directly deal with layer-wise occlusion and apply an optimization framework to propagate the visibility information between multiple layers. On each layer, visibility and optimal focus depth estimation is formulated as a multiple-label energy minimization problem. The layer-wise energy integrates all of the visibility masks from its previous layers, multi-view intensity consistency and depth smoothness constraint together. We compare our method with state-of-the-art solutions, and extensive experimental results demonstrate the effectiveness and superiority of our approach.

Keywords