Ecology and Evolution (Jan 2025)
Prediction of Current and Future Distributions of Chalcophora detrita (Coleoptera: Buprestidae) Under Climate Change Scenarios
Abstract
ABSTRACT The consequences of climate change, accelerated by anthropogenic activities, have different effects on different ecosystems, and the severity of these effects is predicted to increase in the near future. The number of studies investigating how forest ecosystems respond to these changes is increasing. However, there remains a significant gap in research concerning how saproxylic organisms—one of the key contributors to the healthy functioning of these fragile ecosystems—will respond to the consequences of climate change. In our study, we estimated the suitable habitats of the polymorphic species Chalcophora detrita which is distributed across Italy, Albania, Bulgaria, Greece, Türkiye, Cyprus, Syria, Israel and Lebanon. This species of both saproxylic and economic importance, was modelled under current environmental conditions, climate change scenarios and possible future conditions by ecological niche modelling (ENM). An ensemble model was created by using 11 different algorithms (Artificial Neural Network, Classification Tree Analysis, eXtreme Gradient Boosting, Flexible Discriminant Analysis, Generalised Additive Model, Generalised Boosting Model, Generalised Linear Model, Multivariate Adaptive Regression Splines, Maximum Entropy, Random Forest, Surface Range Envelope) to predict the potential suitable habitats of C. detrita. Two different future scenarios (SSP2‐4.5, relatively optimistic and SSP5‐8.5, most pessimistic) are divided into 2021–2040, 2041–2060, 2061–2080 and 2081–2100 time periods. The results of our ENM indicated that bioclimatic variables contribute more than topographic and land cover variables to suitable habitats for the species under current conditions. Furthermore, future scenarios demonstrated that suitable habitats for this species will gradually decrease across the geographical region where the species is distributed. This study provides a theoretical reference framework for the conservation of habitats and the improvement of management plans for species belonging to the genus Chalcophora Dejean 1833 and the other saproxylic beetles.
Keywords