Molecular Pain (May 2009)

NF-κB mediated enhancement of potassium currents by the chemokine CXCL1/growth related oncogene in small diameter rat sensory neurons

  • Zhang Jun-Ming,
  • Strong Judith A,
  • Yang Rui-Hua

DOI
https://doi.org/10.1186/1744-8069-5-26
Journal volume & issue
Vol. 5, no. 1
p. 26

Abstract

Read online

Abstract Background Inflammatory processes play important roles in both neuropathic and inflammatory pain states, but the effects of inflammation per se within the sensory ganglia are not well understood. The cytokine growth-related oncogene (GRO/KC; CXCL1) shows strong, rapid upregulation in dorsal root ganglion (DRG) in both nerve injury and inflammatory pain models. We examined the direct effects of GRO/KC on small diameter DRG neurons, which are predominantly nociceptive. Whole cell voltage clamp technique was used to measure voltage-activated potassium (K) currents in acutely cultured adult rat small diameter sensory neurons. Fluorescently labeled isolectin B4 (IB4) was used to classify cells as IB4-positive or IB4-negative. Results In IB4-negative neurons, voltage-activated K current densities of both transient and sustained components were increased after overnight incubation with GRO/KC (1.5 nM), without marked changes in voltage dependence or kinetics. The average values for the slow and fast decay time constants at 20 mV were unchanged by GRO/KC. The amplitude of the fast inactivating component increased significantly with no large shifts in the voltage dependence of inactivation. The increase in K currents was completely blocked by co-incubation with protein synthesis inhibitor cycloheximide (CHX) or NF-κB inhibitors pyrrolidine dithiocarbamate (PDTC) or quinazoline (6-Amino-4-(4-phenoxypheny lethylamino;QNZ). In contrast, the voltage-activated K current of IB4-positive neurons was unchanged by GRO/KC. GRO/KC incubation caused no significant changes in the expression level of eight selected voltage-gated K channel genes in quantitative PCR analysis. Conclusion The results suggest that GRO/KC has important effects in inflammatory processes via its direct actions on sensory neurons, and that activation of NF-κB is involved in the GRO/KC-induced enhancement of K currents.