Advances in Meteorology (Jan 2013)
Correcting Fast-Mode Pressure Errors in Storm-Scale Ensemble Kalman Filter Analyses
Abstract
A typical storm-scale ensemble Kalman filter (EnKF) analysis/forecast system is shown to introduce imbalances into the ensemble posteriors that generate acoustic waves in subsequent integrations. When the EnKF is used to research storm-scale dynamics, the resulting spurious pressure oscillations are large enough to impact investigation of processes driven by nonhydrostatic pressure gradient forces. Fortunately, thermodynamic retrieval techniques traditionally applied to dual-Doppler wind analyses can be adapted to diagnose the balanced portion of an EnKF pressure analysis, thereby eliminating the fast-mode pressure oscillations. The efficacy of this approach is demonstrated using a high-resolution supercell thunderstorm simulation as well as EnKF analyses of a simulated and a real supercell.