Buildings (May 2021)

An Abridged Review of Buckling Analysis of Compression Members in Construction

  • Manmohan Dass Goel,
  • Chiara Bedon,
  • Adesh Singh,
  • Ashish Premkishor Khatri,
  • Laxmikant Madanmanohar Gupta

DOI
https://doi.org/10.3390/buildings11050211
Journal volume & issue
Vol. 11, no. 5
p. 211

Abstract

Read online

The column buckling problem was first investigated by Leonhard Euler in 1757. Since then, numerous efforts have been made to enhance the buckling capacity of slender columns, because of their importance in structural, mechanical, aeronautical, biomedical, and several other engineering fields. Buckling analysis has become a critical aspect, especially in the safety engineering design since, at the time of failure, the actual stress at the point of failure is significantly lower than the material capability to withstand the imposed loads. With the recent advancement in materials and composites, the load-carrying capacity of columns has been remarkably increased, without any significant increase in their size, thus resulting in even more slender compressive members that can be susceptible to buckling collapse. Thus, nonuniformity in columns can be achieved in two ways—either by varying the material properties or by varying the cross section (i.e., shape and size). Both these methods are preferred because they actually inherited the advantage of the reduction in the dead load of the column. Hence, an attempt is made herein to present an abridged review on the buckling analysis of the columns with major emphasis on the buckling of nonuniform and functionally graded columns. Moreover, the paper provides a concise discussion on references that could be helpful for researchers and designers to understand and address the relevant buckling parameters.

Keywords